Hamiltonian complexity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity One Hamiltonian

We consider compact connected six dimensional symplectic mani-folds with Hamiltonian SU(2) or SO(3) actions with cyclic principal stabilizers. We classify such manifolds up to equivariant symplectomorphisms.

متن کامل

Quantum Hamiltonian Complexity

Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a “Quantum...

متن کامل

The Complexity of the Local Hamiltonian Problem

The k-LOCAL HAMILTONIAN problem is a natural complete problem for the complexity class QMA, the quantum analog of NP. It is similar in spirit to MAX-k-SAT, which is NPcomplete for k ≥ 2. It was known that the problem is QMA-complete for any k ≥ 3. On the other hand 1-LOCAL HAMILTONIAN is in P, and hence not believed to be QMA-complete. The complexity of the 2-LOCAL HAMILTONIAN problem has long ...

متن کامل

Tall Complexity One Hamiltonian Torus Actions

We study torus actions on symplectic manifolds with proper moment maps in the case that each reduced space is two-dimensional. We provide a complete set of invariants for such spaces.

متن کامل

Centered Complexity One Hamiltonian Torus Actions

We consider symplectic manifolds with Hamiltonian torus actions which are “almost but not quite completely integrable”: the dimension of the torus is one less than half the dimension of the manifold. We provide a complete set of invariants for such spaces when they are “centered” (see below) and the moment map is proper. In particular, this classifies the moment map preimages of all sufficientl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reports on Progress in Physics

سال: 2012

ISSN: 0034-4885,1361-6633

DOI: 10.1088/0034-4885/75/2/022001